The Snail-induced sulfonation pathway in breast cancer metastasis
نویسندگان
چکیده
Binding of transcription factors to DNA is a dynamic process allowing for spatialand sequencespecificity. Many methods for determination of DNA-protein structures do not allow for identification of dynamics of the search process, but only a single snap shot of the most stable binding. In order to better understand dynamics of DNA binding, as a protein encounters its cognate site, we have created a computer based DNA scanning array macro which sequentially inserts high affinity DNA consensus binding site at all possible locations in a predicted proteinDNA interface. We show that using short molecular dynamic simulations at each location in the interface, energy minimized states and decreased movement of evolutionary conserved amino acids can be readily observed and used to predict the consensus binding site. This macro is applied to SNAIL class C2H2 zinc finger family proteins. The analysis suggests that 1) SNAIL binds to the E-box in multiple states during encounter with its cognate site; 2) several different amino acids contribute to the E-box binding in each state; 3) the linear array of zinc fingers contributes differentially to overall folding and base-pair recognition, and; 4) each finger may be specialized for stability and sequence specificity. Moreover, the macromolecular movement observed using this dynamic approach may allow the NH2-terminal finger to bind without sequence specificity yet result in higher binding energy. This macro and overall approach could be applicable to many evolutionary conserved transcription factor families and should help elucidate better the varied mechanisms used for DNA sequence specific binding.
منابع مشابه
Analysis of epithelial mesenchymal transition markers in breast cancer cells in response to stromal cell-derived factor 1
Introduction: Metastasis is the main cause of cancer death; however, the underlying mechanisms of metastasis are largely unknown. The chemokine of stromal cell-derived factor 1 (SDF1) and the process of epithelial mesenchymal transition (EMT), both have been declared as important factors to promote cancer metastasis; however, Conspicuously, the relation between them has not been recognized well...
متن کاملSilencing of rhomboid domain containing 1 to inhibit the metastasis of human breast cancer cells in vitro
Objective(s): A growing body of evidence indicates that rhomboid domain containing 1 (RHBDD1) plays an important role in a variety of physiological and pathological processes, including tumorigenesis. We aimed to determine the function of RHBDD1 in breast cancer cells. Materials and Methods: In this study, we used the Oncomine™ database to determine the expression patterns of RHBDD1 in normal a...
متن کاملLong non-coding RNA FOXO1 inhibits lung cancer cell growth through down-regulating PI3K/AKT signaling pathway
Objective(s): Lung cancer is one of the most common malignant tumors, which seriously threatens the health and life of the people. Recently, a novel long non-coding RNA (lncRNA) termed lncFOXO1 was found and investigated in breast cancer. However, the effect of lncFOXO1 on lung cancer is still ambiguous. The current study aimed to uncover the functions of lncFOXO1 in l...
متن کاملEGF induces epithelial-mesenchymal transition through phospho-Smad2/3-Snail signaling pathway in breast cancer cells
Epithelial-mesenchymal transition (EMT) can contribute to tumor invasion, metastasis, and resistance to chemotherapy or hormone therapy. EMT may be induced by a variety of growth factors, such as epidermal growth factor (EGF). Most studies regarding EMT have focused on TGF-β-Smads signaling. The mechanism of EGF-induced EMT via activation of the Smad2/3 in breast cancer cells, MCF-7 and MDA-MB-...
متن کاملStabilization of snail by NF-kappaB is required for inflammation-induced cell migration and invasion.
The increased motility and invasiveness of tumor cells are reminiscent of epithelial-mesenchymal transition (EMT), which occurs during embryonic development, wound healing, and metastasis. In this study, we found that Snail is stabilized by the inflammatory cytokine TNFalpha through the activation of the NF-kappaB pathway. We demonstrated that NF-kappaB is required for the induction of COP9 sig...
متن کاملNodal signaling promotes vasculogenic mimicry formation in breast cancer via the Smad2/3 pathway
Vasculogenic mimicry (VM) is a nonangiogenesis-dependent pathway that promotes tumor growth and disease progression. Nodal signaling has several vital roles in both embryo development and cancer progression. However, the effects of Nodal signaling on VM formation in breast cancer and its underlying mechanisms are ill-defined. We analyzed the relationship between Nodal signaling and VM formation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013